Thursday, 20 February 2020

THERMAL IMAGING FOR SAFER AUTONOMOUS VEHICLES






Credits : pexels.com

Since its inception in the 1980s, machine vision has concerned itself with two things: improving the technology’s power and capability and making it easier to use. Today, machine vision is turning to higher-resolution cameras with greater intelligence to empower new automated solutions both on and off the plant floor — all with a simplicity of operation approaching that of the smartphone, which significantly reduces engineering requirements and associated costs.

And, just like in other industries which are benefiting from rapid advancements in technology like big data, the cloud, artificial intelligence (AI), and mobile, so too will manufacturers, logistics operations, and other enterprises benefit from three key advances in machine vision for automation.

RAPIDLY IMPROVING SENSOR TECHNOLOGY

While 1-, 2-, and 5-megapixel (MP) cameras continue to make up the bulk of machine vision camera shipments, we’re seeing considerable interest in even higher-resolution smart cameras, up to 12 MP. High-resolution sensors mean that a single smart camera inspecting an automobile engine can do the work of several lower resolution smart cameras while maintaining high-accuracy inspections.

Cognex’s patent-pending High Dynamic Range Plus (HDR+) image processing technology provides even better image fidelity than your typical HDR. It will help smart cameras inspect multiple areas across large objects where lighting uniformity is less than ideal. In the past, lighting variations could be mistaken for defects or the feature was not even visible. Today, HDR+ helps reduce the effects of lighting variations, enabling applications in challenging environments that were beyond the capability of machine vision technology just a few years ago.

While advanced smart cameras run HDR+ technology on field-programmable gate arrays (FPGAs) to improve the quality of the acquired image at frame rate speeds, complementary sensor technology, such as time-of-flight (ToF) sensors, are being incorporated to enable “distance-based dynamic focus”.

The new high-powered integrated torch (HPIT ) image formation system, using ToF distance measurement and high-speed liquid lens technology, are also making an impact by enabling dynamic autofocus at frame rate. The newest barcode readers incorporate HPIT capability for applications such as high-speed tunnel sortation and warehouse management in situations where packages and product size can vary significantly, requiring the camera to quickly adapt to different focal ranges.

INTEGRATION WITH DEEP LEARNING

Just like AI’s impact in other industries, deep learning vision software for factory automation is allowing enterprises to automate inspections that were previously only able to do manually or more efficiently solve complex inspection challenges that are cumbersome or time-consuming to do with traditional rule-based machine vision.

The biggest use driving the investment in deep learning is the potential of re-allocating, in many cases, hundreds of human inspectors with deep learning-based inspection systems. For the first time, manufacturers have a technology that offers an inspection solution that can achieve comparable performance to that of a human.

One example of how deep learning will benefit organizations is in defect detection inspection. Every manufacturer wants to eliminate industrial defects as much as possible and as early as possible in the manufacturing process to reduce downstream impacts that cost time and money.

Defect detection is challenging because it is nearly impossible to account for the sheer amount of variation in what constitutes a defect or what anomalies might fall within the range of acceptable variation.

As a result, many manufacturers utilize human inspectors at the end of the process to perform a final check for unacceptable product defects. With deep learning, quality engineers can train a machine vision system to learn what is an acceptable or unacceptable defect from a data set of reference pictures rather than program the vision system to account for the thousands of defect possibilities.

THE INTERNET OF THINGS

An important development for smart camera vision systems enabling Industry 4.0 initiatives is Open Platform Communications Unified Architecture (OPC UA). With contributions from all major machine vision trade associations around the world, OPC UA is an industrial interoperability standard developed to help machine-to-machine communication.

Combined with advanced sensor technology and trends such as deep learning, OPC UA will help transition machine vision technology from a point solution to bridge the industrial world inside the plant and the physical world outside it. Today, vision systems and barcode readers are key sources of data for modern enterprises.

TO KNOW MORE ABOUT HIGH RESOLUTION STANDALONE SMART CAMERAS DEALER SINGAPORE, CONTACT MVASIA INFOMATRIX PTE LTD AT +65 6329-6431 OR EMAIL US AT INFO@MVASIAONLINE.COM



THERMAL IMAGING FOR SAFER AUTONOMOUS VEHICLES


FEBRUARY, 2020
Credits : pexels.com

For the automotive industry, pedestrian safety has been a serious concern since the horseless carriage. Londoner Arthur Edsall was the first driver to strike and kill a pedestrian in 1896 at a speed of four miles per hour. It took the U.S. Congress almost seventy years to impose automotive safety standards and mandate the installation of safety equipment and another thirty years before airbags became a required safety feature. Automotive safety standards in the United States are promulgated by a process of reviewing accidents after they have occurred.

In 2019, the National Transportation Safety Board (“NTSB”) finally addressed this standards - promulgation process in their Most Wanted List of transportation safety improvements calling for an increase in the implementation of collision-avoidance systems in all new highway vehicles. The progression of this change in policy derived from the 2015 study (SIR-15/01) that described the benefits of forward-collision-avoidance systems and their ability to prevent thousands of accidents.

After that report was published, an agreement was reached with the National Highway Traffic Safety Administration (“NHTSA”) and the Insurance Institute for Highway Safety that would require compliance with the Automatic Emergency Braking standard (“AEB”) on all manufactured vehicles by 2022. However, the agreement did not identify the specific technology that would enable AEB, and the question remains whether such technology is readily available and economically viable for industry-wide adoption.

RAPIDLY IMPROVING SENSOR TECHNOLOGY


The pace of technology over the last thirty years has been astronomical, yet technology to make driving safer has not kept pace. A computer that not too long ago was the size of a garage now fits into the palm of your hand. Today driving should be safer than ever, but the reality is that without the implantation of available modern technologies, the uncertainties of the road will always be with us. According to the NHTSA, there were 37,461 traffic fatalities in 2016 in the United States.

In 2015, there were a total of 6,243,000 passenger car accidents. 1 Globally, there is a fatality every twenty-five seconds and an injury every 1.25 seconds. In the United States there is a fatality every thirteen minutes and an injury every thirteen seconds. These statistics are mind blowing. Compared to recent events affecting the aviation industry, two Boeing 737 MAX 8 airplanes crashed killing 346 people, the same number of people that die as a result of automobile accidents every 144 minutes, and all Boeing 737 MAX 8 airplanes were grounded

The cost for automotive accidents is high. According to the national safety counsel, in the United States, the annual cost of health care resulting from cigarette smoking is approximately $300 billion whereas the annual cost of health care for injuries arising from automobile accidents is roughly $415 billion.

Technology to protect automobile occupants has reduced the number of driver and passenger fatalities. However, the number of people who die as a result of an accident outside the automobile continue to climb at an alarming rate. Pedestrians are at the greatest risk, especially after dark.

The NHTSA reports that in 2018, 6,227 pedestrians were killed in United States traffic accidents, with seventy-eight percent of pedestrian deaths occurring at dusk, dawn, or night.2 In the United States, pedestrian fatalities have increased forty-one percent since 2008. Solutions to address pedestrian fatalities are needed to meet the standards by 2022.

TECHNOLOGY IN THE DRIVER’S SEAT


Ultimately, it is safer cars and safer drivers that make driving safer, and automotive designers need to deploy every possible technological tool to improve driver awareness and make cars more automatically responsive to impending risks. Today’s safest cars can be equipped with a multitude of cameras and sensors to make them hyper-sensitive to the world around them and intelligent enough to take safe evasive action as needed. Microprocessors can process images and identify subject matter 1,000,000 times faster than a human being

Advanced Driver Assist Systems (“ADAS”) are becoming the norm, spotting potential problems ahead of the automobile making auto travel safer for drivers, passengers, and pedestrians, not to mention the more than one million ‘reported’ animals struck by automobiles in the United States annually resulting in $4.2 billion in insurance claims each year. The advances we have seen so far are the first steps to evolving towards a future of truly autonomous vehicles that will revolutionize both personal and commercial transportation.

Drivers need no longer rely on eyes alone to maintain situational awareness. Early generations of vision-assisting cameras were innovative, but they were not particularly intelligent and could do little to perceive the environment around the car and communicate information that could be used for driver decision-making.

Today, with tools such as radar, light detection and ranging (“LIDAR”), cameras, and ultrasound installed, a car knows much more about the environment than the driver does and can control the vehicle faster and safer than the human driver. Risky driving conditions such as rain, fog, snow, and glare, are less hazardous when a driver is assisted by additional onboard sensors and data processors.

One of the most advanced automotive sensors is a thermal sensor that allows a driver and the automobile to perceive the heat signature of anything ahead of the driver. Previously used mainly for military and commercial applications, early forms of night vision first came to the mainstream automotive market in the 2000 Cadillac DeVille, albeit as a cost-prohibitive accessory priced at almost at a cost approaching $3,000.

Since then, thermal cameras and sensors have become smaller, lighter, faster and cheaper. After years of exclusive availability in luxury models, thermal sensors are now ready to take their place among other automotive sensors to provide a first line of driving defense that reaches far beyond the reach of headlights in all vehicles, regardless of the cost of the vehicle.


TO KNOW MORE ABOUT HIGH RESOLUTION STANDALONE SMART CAMERAS DEALER SINGAPORE, CONTACT MVASIA INFOMATRIX PTE LTD AT +65 6329-6431 OR EMAIL US AT INFO@MVASIAONLINE.COM